Installation¶
The installation of the latest stable version is easy using the python package manager pip.
pip install skpro
skpro
depends on the scikit-learn
package and its respective dependencies numpy
and scipy
which will be pulled in automatically during installation.
Furthermore, you may install optional package dependencies that enhance the workflow components (i.e. uncertainties and tabulate).
pip install skpro[workflow]
That’s it. You are now ready to go. We recommend reading the user guide to get started.
Bleeding edge¶
To test or develop new features you may want to install the latest package version from the development branch (bleeding edge installation).
Clone the source from our public code repository on GitHub and change into the skpro directory. Make sure that all dependencies are installed:
pip install -r requirements.txt
Then run
python setup.py develop
to install the package into the activated Python environment. To build the documentation run
python setup.py docs
Note that bleeding edge installations are likely contain bugs are not recommended for productive environments.
If you like to contribute to documentation please refer to our contribution guide.