skpro
1.0.0b1.post0.dev22+ng05f0df0
  • Introduction
  • Installation
  • User guide
  • Baseline strategies
  • Composite parametric prediction
  • Vendor integrations
  • Meta-modelling
  • Workflow automation
  • Custom strategies
  • API Reference
  • Changelog
  • Authors
  • Contributing & Citation
  • License
skpro
  • Docs »
  • Contents
  • View page source

_images/logo.png

Welcome to the documentation of skpro – a domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions, in supervised contexts.

Contents¶

  • Introduction
    • Features
    • A motivating example
  • Installation
    • Bleeding edge
  • User guide
    • Overview
    • Available prediction strategies
    • Advanced topics
    • Help and support
  • Baseline strategies
    • DensityBaseline
  • Composite parametric prediction
    • Overview
    • Estimators
    • Example
  • Vendor integrations
    • PyMC3
    • Integrate other models
  • Meta-modelling
    • Hyperparamter optimization
    • Pipelines
    • Ensemble methods
  • Workflow automation
    • Model-view-controller structure
    • Result aggregation and comparison
    • Code example
  • Custom strategies
    • Developing custom models
    • Integrating vendor models
  • API Reference
    • skpro package
  • Changelog
    • Version 1.0b
  • Authors
  • Contributing & Citation
    • Contributing guide
    • Cite skpro
  • License

Indices and tables¶

  • Index
  • Module Index
  • Search Page
Next

© Copyright 2017, The Alan Turing Institute; University College London

Built with Sphinx using a theme provided by Read the Docs.