skpro.parametric package¶
Submodules¶
skpro.parametric.estimators module¶
-
class
skpro.parametric.estimators.
Constant
(constant=None, name=None)[source]¶ Bases:
sklearn.base.BaseEstimator
Constant estimator
Predicts predefinied constant
Parameters: - constant (float | callable(X, y) | string: 'mean(y)', 'std(y)' (default: None)) – Specifies the constant. A callable receives the training data during fit and should return a constant value. The string options provide a shortcut for mean/std extraction from the features.
- name (string (optional)) – Optional description of the constant for the estimator string representation. Defaults to str(constant).
-
get_params
(deep=True)¶ Get parameters for this estimator.
Parameters: deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params – Parameter names mapped to their values. Return type: mapping of string to any
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: Return type: self
-
class
skpro.parametric.estimators.
Minimum
(base_estimator, minimum=0.3, relative=True)[source]¶ Bases:
sklearn.base.BaseEstimator
Minimum estimator
Wrapping estimator that replaces predictions of the wrapped estimator that fall below a specified minimum threshold with the threshold itself.
Parameters: - estimator (subclass of sklearn.base.BaseEstimator) – Estimator which predicts shall be bounded by minimum threshold
- minimum (float) – Minimum boundary for the estimator’s predictions. If relative=True the minimum represent a percentage value
- relative (bool) – If true, minimum will be regarded as percentage value
and the cut-off threshold will be determined dynamically
during fitting as
threshold = minimum * std(y)
- Properties –
- ---------- –
- estimator – Wrapped estimator
- minimum – Minimum threshold
- relative – If minimum is relative with regard to label variance
-
get_params
(deep=True)¶ Get parameters for this estimator.
Parameters: deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params – Parameter names mapped to their values. Return type: mapping of string to any
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: Return type: self
skpro.parametric.parametric module¶
-
class
skpro.parametric.parametric.
EstimatorManager
(parent)[source]¶ Bases:
object
Helper class that simplifies the estimator management
Parameters: parent (subclass of sklearn.base.BaseEstimator) – Parent estimator object -
register
(name, estimator, selector=None)[source]¶ Registers an estimator
Parameters: - name (str) – Name of the estimator
- estimator (Estimator object | string name of a registered estimator) – Instance of subclass of sklearn.base.BaseEstimator
- selector (callable(estimator, X) (optional)) – Defines how a prediction should be retrieved from an estimator
Returns: bool
Return type: True on success
-
-
class
skpro.parametric.parametric.
ParametricEstimator
(point=None, std=None, point_std=None, shape='norm')[source]¶ Bases:
skpro.base.ProbabilisticEstimator
Composite parametric prediction strategy.
Uses classical estimators to predict the defining parameters of continuous distributions.
Read more in the User Guide.
-
class
Distribution
(estimator, X, selection=slice(None, None, None), mode='elementwise')[source]¶ Bases:
skpro.base.Distribution
-
X
¶ Reference of the test features that are ought to correspond with the predictive distribution represented by the interface.
The interface methods (e.g. pdf) can use X to construct and exhibit the predictive distribution properties of the interface (e.g. construct the predicted pdf based on X)
Note that X automatically reflects the feature point for which the interface is ought to represent the distributional prediction. For given M x n features, X will thus represent an 1 x n vector that provides the bases for the predicted distribution. However, if the
vectorvalued()
decorator is applied X will represent the full M x n matrix for an efficient vectorized implementation.Getter: Returns the test features based on the current subset selection Setter: Sets the data reference Type: array
-
cdf
(x, *args, **kwargs)¶
-
lp2
¶
-
mean
(*args, **kwargs)¶ Mean prediction
Returns: Return type: The mean prediction that corresponds to self.X
-
pdf
(x, *args, **kwargs)¶
-
point
¶
-
ppf
(x)[source]¶ Percent point function (inverse of cdf — percentiles).
Parameters: q – Returns: Return type: float
-
replicate
(selection=None, mode=None)¶ Replicates the distribution object
Parameters: - selection (None | slice | int (optional)) – Subset point selection of the distribution copy
- mode (str (optional)) – Interface mode (‘elementwise’ or ‘batch’)
Returns: Return type: skpro.base.ProbabilisticEstimator.Distribution
-
std
¶
-
-
class
ImplementsEnhancedInterface
(name, bases, clsdict)¶ Bases:
abc.ABCMeta
Meta-class for distribution interface
Enhances the distribution interface behind the scenes with automatic caching and syntactic sugar for element-wise access of the distributions
-
mro
() → list¶ return a type’s method resolution order
-
register
(subclass)¶ Register a virtual subclass of an ABC.
Returns the subclass, to allow usage as a class decorator.
-
-
fit
(X, y)[source]¶ Fits the model
Parameters: - X (numpy array or sparse matrix of shape [n_samples,n_features]) – Training data
- y (numpy array of shape [n_samples, n_targets]) – Target values. Will be cast to X’s dtype if necessary
Returns: self
Return type: returns an instance of self.
-
get_params
(deep=True)¶ Get parameters for this estimator.
Parameters: deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params – Parameter names mapped to their values. Return type: mapping of string to any
-
name
()¶
-
predict
(X)¶ Predicts using the model
Parameters: X ({array-like, sparse matrix}, shape = (n_samples, n_features)) – Samples. Returns: Returns predicted distributions Return type: Distribution
interface representing n_samples predictions
-
score
(X, y, sample=True, return_std=False)¶ Returns the log-loss score
Parameters: - X (np.array) – Features
- y (np.array) – Labels
- sample (boolean, default=True) – If true, loss will be averaged across the sample
- return_std (boolean, default=False) – If true, the standard deviation of the loss sample will be returned
Returns: Log-loss score
Return type: mixed
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: Return type: self
-
class
skpro.parametric.residuals module¶
-
class
skpro.parametric.residuals.
ResidualEstimator
(residual_estimator, base_estimator='point', fit_transform='squared_error', predict_transform=None, filter_zero_variance=False)[source]¶ Bases:
sklearn.base.BaseEstimator
Residual estimator
Predicts residuals of an estimator using a scikit-learn estimator.
Read more in the User Guide.
-
get_params
(deep=True)¶ Get parameters for this estimator.
Parameters: deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params – Parameter names mapped to their values. Return type: mapping of string to any
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: Return type: self
-
-
skpro.parametric.residuals.
abs_error_pt
(y_pred)¶