skpro.vendors package¶
Submodules¶
skpro.vendors.pymc module¶
-
class
skpro.vendors.pymc.
PymcInterface
(model_definition, sample_size=500)[source]¶ Bases:
skpro.base.BayesianVendorInterface
PyMC3 interface
Allows for the integration of PyMC3 models
Parameters: - model_definition (callable(model, X, y)) – Callable that defines a model using the
given PyMC3
model
variable and training featuresX
as well as and the labelsy
. - samples_size (int (optional, default=500)) – Number of samples to be drawn from the posterior distribution
-
on_fit
(X, y)[source]¶ Implements vendor fit procedure
Parameters: - X (np.array) – Training features
- y (np.array) – Training labels
Returns: Return type:
- model_definition (callable(model, X, y)) – Callable that defines a model using the
given PyMC3