skpro.workflow.manager package

Submodules

skpro.workflow.manager.data module

class skpro.workflow.manager.data.DataManager(X=None, y=None, split=0.2, name=None, random_state=None)[source]

Bases: object

A helper to manage datasets more easily. Test/training split is carried out behind the scenes whenever new data is being assigned

Parameters:
  • X (np.array | string) – Features or ‘boston’, ‘diabetes’ to load sklearn datasets, url of file
  • y (np.array) – Labels
  • split (float, default=0.2) – Train/test split
  • name (string, default=None) – Optional name to be used in the object representation
  • random_state (int, default=None) – Optional random state to be used during split
X_train

Training features

Type:np.array
X_test

Training labels

Type:np.array
y_train

Test features

Type:np.array
y_test

Test labels

Type:np.array
X
clone()[source]

Clones the data manager

Returns:
Return type:A copy of the data manager itself
data(copy=True)[source]

Returns the data

Parameters:copy (boolean, default=True) – If false, reference copy will be used
Returns:
Return type:X, y
shuffle(random_state=None)[source]

Shuffles the data

Parameters:random_state (int, default=None) – Optional random state
Returns:
Return type:None
y
skpro.workflow.manager.data.load_file(file, return_X_y=False)[source]
skpro.workflow.manager.data.load_url(url, return_X_y=False)[source]
skpro.workflow.manager.data.retrieve_data(url)[source]

skpro.workflow.manager.models module

class skpro.workflow.manager.models.ModelManager[source]

Bases: object

Model manager

all()[source]
group(name)[source]
info()[source]
register(model, tuning=None, group=None, distinguish_tuning=True)[source]

Module contents