skpro.workflow.manager package¶
Submodules¶
skpro.workflow.manager.data module¶
-
class
skpro.workflow.manager.data.DataManager(X=None, y=None, split=0.2, name=None, random_state=None)[source]¶ Bases:
objectA helper to manage datasets more easily. Test/training split is carried out behind the scenes whenever new data is being assigned
Parameters: - X (np.array | string) – Features or ‘boston’, ‘diabetes’ to load sklearn datasets, url of file
- y (np.array) – Labels
- split (float, default=0.2) – Train/test split
- name (string, default=None) – Optional name to be used in the object representation
- random_state (int, default=None) – Optional random state to be used during split
-
X_train¶ Training features
Type: np.array
-
X_test¶ Training labels
Type: np.array
-
y_train¶ Test features
Type: np.array
-
y_test¶ Test labels
Type: np.array
-
X¶
-
data(copy=True)[source]¶ Returns the data
Parameters: copy (boolean, default=True) – If false, reference copy will be used Returns: Return type: X, y
-
shuffle(random_state=None)[source]¶ Shuffles the data
Parameters: random_state (int, default=None) – Optional random state Returns: Return type: None
-
y¶